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ABSTRACT- Several papers studied the effect of the third body perturbation in a 
spacecraft, usually working with the Hamiltonian of the system or with the disturbing 
function expressed in an analytic manner. The present paper has the goal of 
developing a semi-analytical study of the perturbation caused in a spacecraft by a 
third body with a single averaged model to eliminate the terms due to the short time 
periodic motion of the spacecraft. Several plots will show the time histories of the 
Keplerian elements of the orbits involved. One of the most important applications is 
to calculate the effect of Lunar and Solar perturbations on high-altitude Earth 
satellites. 
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INTRODUCTION 
 
The effects of the gravitational attractions of the Sun and the Moon in the orbits of Earth’s artificial 
satellites has been studied in many papers. Spitzer uses only the first terms of the Hill-Brown lunar 
theory, so the results are limited by the assumptions of small eccentricity and small inclination for the 
orbit of the disturbed body with respect to the orbit of the disturbing body. Kozai [13] writes down 
Lagrange’s planetary equations and the disturbing function due to the Sun or the Moon, including both 
secular and long periodic terms, but it only gives explicit expressions for the secular terms. Blitzer [7] 
ignores the specialized techniques of celestial mechanics and it obtains estimates for the perturbations by 
using methods of classical mechanics. Again, only secular terms are included, and it shows that the 
principal effect is a precession of the orbital plane around the pole of the ecliptic. Musen [10] shows two 
systems of formulas for the determination of the long periodic perturbations. The first system uses the 
theory originally developed by Gauss for a numerical treatment of the very long periodic effects in 
planetary motion, and the second method is based on the development of the disturbing function in terms 
of the Legendre polynomials and it finds long periodic terms and the influence on the stability of the 
orbit. 
Cook [4] studied the perturbations due solely by a third body from Lagrange’s planetary equations by 
integrating over one revolution of the satellite. The rates of change of the orbital elements averaged over 
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one revolution are then written and all first order terms (secular and long-period) are retained in the 
analysis. The theory is limited to satellites whose semi-major axis does not exceed one tenth of the 
Moon’s distance from the Earth. 
After that, Giacaglia [5] obtained the disturbing function for the Moon’s perturbations using ecliptic 
elements for the Moon and equatorial elements for the satellite. Secular, long-period and short-period 
perturbations are then computed, with the expressions kept in closed form in both inclination and 
eccentricity of the satellite. Alternative expressions for short-period perturbations of high satellites are 
also given, assuming small values of the eccentricity. 
Hough [9] used the Hamiltonian formed by a combination of the declination and the right ascension of the 
satellite, the Moon, and the Sun. After that he averaged the Hamiltonian in small and moderate 
fluctuations and studied periodic perigee motion for orbits near the critical inclinations 63.40 and 116.60. 
The theory predicts the existence of larger maximum fluctuations in eccentricity and faster oscillations 
near stable equilibrium points. Delhaise and Morbidelli [3] investigated the Lunisolar effects of a 
geosynchronous artificial satellite orbiting near the critical inclination, analyzing each harmonic formed 
by a combination of the satellite longitude of the node and the Moon’s longitude of the node. He 
demonstrates that the dynamics induced by these harmonics does not show resonance phenomena. 
Other researches developed by Broucke [11] and Prado and Costa [1] show general forms of the 
disturbing function of the third body truncated after the term of second and fourth order, respectively, in 
the expansion in Legendre polynomials. After that, Costa [6] expanded the order of this model to order 
eight.             
 
MATHEMATICAL MODELS 
 
Our model can be formulated in a very similar way of the formulation of the planar restricted three-body 
problem: 
- There are three bodies involved in the dynamics: one body with mass m0 fixed in the origin of the 
reference system, a second massless body in a three-dimensional orbit around m0 and a third body in a 
circular orbit around m0 (see Figure 1). 
- The motion of the spacecraft (the second massless body) is Keplerian and three-dimensional, with its 
orbital elements perturbed by the third body. The motion of the spacecraft is studied with the single 
averaged model, where the average is performed with respect to the true anomaly of the spacecraft (f). 
The disturbing function is then expanded in Legendre polynomials. 
This section derives the equations used during the simulations. The main body m0 is fixed in the center of 
the reference system X-Y. The perturbing body m' is in a circular orbit with semi-major axis a' and mean 
motion n' (n'2 a'3 =G(m0 +m')). The spacecraft is in a three dimensional orbit, with  orbital elements: a, e, i, 
ω, Ω, and mean motion n (where n2 a3 =Gm0 ). 
In this situation, the disturbing potential that the spacecraft has from the action of the perturbing body is 
given by (using the expansion in Legendre polynomials and assuming that r'>>r) (Broucke [11]): 
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The parts of the disturbing potential due to P2 to P4  are: 
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The next step is to average those quantities over the short period of the satellite. The definition for 
average used in this paper is: 

∫
π

π
>=<

2

0

GdM
2
1G       (5) 

 
 

 
Fig. 1. Illustration of the third body perturbation. 

 
 

Figure 2 shows the relations between the orthogonal set of vectors P
)

, Q
)

, R
)

 and the orbital plane 
coordinate system, where 'r)  and r)  are unit vectors pointing from the central body to the perturbing body 
and of central body to the satellite, respectively. M is the mean anomaly of the satellite and M' is the 
mean anomaly of the perturbing body. The results are for the special case of circular orbits for the 
perturbing body and with the initial mean anomaly of the perturbing body equal to zero. The following 
relations are available (Broucke [11]): 
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With those relations it is possible to relate the angle S with the positions of the perturbing and the 
perturbed bodies. 
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After of process of average the results available are: 
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Fig. 2. The orthogonal set P
)
, Q
)

, R
)

 and the orbital plane coordinate system.  
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The next step is to obtain the equations of motion of the spacecraft. From the Lagrange's planetary 
equations, that depends on the derivatives of the disturbing function (equation’s 12 – 17 see Taff [8] ). It 
is noticed that the semi-major axis always remains constant. This occurs because, after the averaging, the 
disturbing function does not depend on Mo : 
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It is visible that the semi-major axis always remains constant. This occurs because, after the averaging, 
the disturbing function does not depend on M0 . 
 
RESULTS 
 
Looking for the behavior of the orbital elements for values of the initial inclination above and below the 
critical value, it is visible that the inclination oscillates with a varied amplitude. The so called "critical 
angle of the third-body perturbation" is a value for the inclination between the orbital planes of the 
perturbing and the perturbed bodies, such that any near-circular orbit with inclination below this remains 
near-circular. 
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Fig. 3. Plots of the Inclination for i(0) = 20 deg Fig. 4. Plots of Inclination for i(0) = 35 deg  

 
From the evolution of the inclination for a initial value of 20 deg, it is clear that the amplitude of the 
variation is of the order of  0.0007 (see Figure 3). Figure 4 shows the evolution of the inclination for a 
initial value of 35 deg, that is a value near critical (39.231 deg). It is possible to identify a periodic 
behavior with an amplitude of 0.0011. It is also visible that for the case showed in Figure 3 the 
oscillations occur around a line of constant inclination and in Fig. 4 these oscillations occur around a line 
that also has a sinusoidal shape. The results available in the literature regarding the double averaged 
problem confirm and explain this behavior (Prado [2]).  
For the cases of initial inclinations above the critical value, the inclination starts at the initial value, 
decreases to the critical value and then it returns again to its original value (see Figures 5 and 6). 
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The results are very similar to the ones obtained with the double averaged approach (Prado [2]). The 
reason for t  scale used in the plots. The difference between both methods is the existence of a 
short period oscillation around the main lines giving by the double averaged method and this oscillation is 
not visible i e used in the plots. H

hat is the

n the scal
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Fig. 5. Plots of Inclination for i(0) = 55 deg  Fig. 6. Plots of Inclination for i(0) = 70 deg  

 
The next simulations show results for initial inclinations below the critical value. The scales of the plots 
has to be noticed, and they show that the evolution of the inclination can be expressed in straight line (see 
Figure 7). 
 

 
                   Fig. 7. Plots of Inclination for i(0) < i 

critical   
Fig. 8. Plots of Inclination for i(0) > i critical  

 
The evolutions of the inclination for starting values above the critical inclination show curves that has the 
characteristic behavior of starting with an initial value, decreasing to the critical value, then returning to 
its original value (see Figure 8). Now, we measure the effect of increasing the initial inclination. The 
results show that the time for reaching the critical value is reduced. 
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Fig. 9. Plots of the Eccentricity for  i(0) = 20 deg Fig. 10. Plots of the Eccentricity for i(0) = 35 deg 
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The next step is to study the evolutions of the eccentricity. It oscillates with a very small amplitude for 
values of the initial inclination below critical (see Figure 9). The oscillation have an amplitude of 0.003 
for the initial inclination of 20 deg. Figure 10 shows the evolution of the eccentricity for values of the 
initial inclination near the critical value, and it is possible to identify the evolutions with amplitude of  
0.025. 
It is important to notice that, when the eccentricity reach its maximum amplitude, the inclination reach its 
smaller amplitude for the case of initial inclination near or above of critical value  (see the Figures 4, 5, 6, 
10, 11, 12). 
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Fig. 11. Plots of the Eccentricity for i(0) = 55 deg Fig. 12. Plots of the Eccentricity for i(0) = 70 deg 
 

Figure. 13. Plots of the Eccentricity for i(0) < i 
critical 

Fig. 14. Plots of the Eccentricity for i(0) > i 
critical 

    

When plots of the eccentricity for values of the initial inclination below critical (see Figure 13) are made, 
they show that the amplitudes decrease. This is important to keep the stability of the orbits. 
Figure 14 shows the evolutions of the eccentricity for values of the initial inclination above the critical 
value.  
Figures 15 and 16 have a characteristic behavior. In these simulations it is shown the plots for initial 
inclination above the critical value. It is possible to identify the evolution of the inclination vs. the 
eccentricity, to notice that, when the inclination reaches it maximum value, the eccentricity reaches its 
minimum value. This curves is periodic for the evolution of the inclination and eccentricity. 
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Fig. 15. Eccentricity vs. Inclination for i (0) = 55 

deg. 
Fig. 16. Eccentricity vs. Inclination for  i (0) = 

70 deg. 
 

The orbital elements used for those simulation are: a[0]=0.341, e[0]=0.01, Ω[0]=0, ω[0]=0. Remember 
that the time is defined such that the period of the disturbing body is 2π (canonical system of units). 
 
CONCLUSIONS 
 
This paper develops the third body perturbation using a single averaged model, expanding the 
perturbation function up to the fourth order. The results show the behavior of the orbits with respect to the 
initial inclination. The orbital elements present small oscillations and/or secular behavior. This semi-
analytical model is able to study the evolutions of the orbital elements and the importance of the critical 
inclination in the stability of near circular orbits. The results are compared with the ones obtained by the 
double-averaged model. It confirms the same properties obtained from this model. The main difference in 
the results is the existence of oscillations around a main line given by the double-averaged model. 
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